Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Lilianna Chęcińska, ${ }^{\text {a }}$ * Magdalena Małecka, ${ }^{\text {a }}$ Tomasz A. Olszak ${ }^{\text {a }}$ and Zbigniew H. Kudzin ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Crystallography, University of Łódź, Pomorska 149/153, PL-90236 Łódź, Poland, and ${ }^{\text {b }}$ Department of Organic Chemistry, University of Łódź, Narutowicza 68, PL-90136 Łódź, Poland

Correspondence e-mail:
lilach@krysia.uni.lodz.pl

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
ωR factor $=0.141$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

O,O-Diphenyl 2-methyl-1-(3-phenylthioureido)propanephosphonate

The crystal structure of the title compound, $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}$, is reported. The centrosymmetrically related molecules are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and, as a result, the molecules exist as dimers. The geometry about the P atom can be described as distorted tetrahedral.

Comment

O, O-Diphenyl N-phenylthioureidoalkanephosphonates are synthetically attractive due to their broad applications in the synthesis of various 1-aminoalkanephosphonic acids (Kudzin \& Stec, 1978; Kudzin, 1996; Kafarski \& Zoń, 2000). Moreover, this class of phosphonates presents a structural analogy to PTC-amino acids (phenylthiocarbamoylamino acids). There are no reported crystal structure determinations of phosphonylated thioureas, so this prompted us to perform X-ray investigations on this series of compounds. The study was carried out in order to obtain structural information about the geometry around the P atom and was also directed to the assignment of types and locations of molecular hydrogen bonds.

Received 7 November 2001 Accepted 15 November 2001 Online 24 November 2001

(I)

The title compound, (I), contains the N-phenylthioureide group, O, O-diphenylphosphonate moiety and isopropyl group linked by means of the methine carbon (C2).

The geometry around the P atom is distorted tetrahedral, the angles varying from 116.3 (1) to 101.5 (1) ${ }^{\circ}$. All angles involving the non-ester O atom are larger than the others.

In the present structure, atom O 1 participates in two $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The interaction involving atoms N 1 , H 1 and $\mathrm{O} 1^{\mathrm{i}}$ [symmetry code: (i) $-x+2,-y+1,-z+1$] creates a pattern whose first-level graph-set descriptor (Bernstein et al., 1995) is $R_{2}{ }^{2}(14)$. Moreover, interaction $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$ produces an $R_{2}{ }^{2}(10)$ motif. The combination of two hydrogen bonds provides a finite pattern of type $R_{2}{ }^{1}(6)$. Furthermore, this second level hydrogen-bonding motif seems to have an influence in shortening the $\mathrm{H} 1 \cdots \mathrm{H} 2$ distance $[1.95$ (4) \AA], as both atoms are connected to the same acceptor-O atom. Finally, the molecules exist as dimers.

The benzene rings are planar within experimental error. The thioureide group is also flat, as expected. The $\mathrm{S} 1-\mathrm{C} 1$ bond length, 1.663 (2) \AA, is shorter than the unweighted mean value, $1.681 \AA$, given for $\mathrm{C}=\mathrm{S}$ in thioureas (Allen et al., 1987),

Figure 1
The structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.
but longer than 1.658 (2) \AA (Zhang et al., 1996) and 1.659 (3) \AA (Cao et al., 1996) for thioureas. The decrease in the $\mathrm{C} 1=\mathrm{S} 1$ bond length is reflected in the elongation of the $\mathrm{N}-$ $\mathrm{Csp}{ }^{2}$ distances ($\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 2-\mathrm{C} 1$) compared with the mean value of $1.346 \AA$ (Allen et al., 1987). The dihedral angle between the mean plane of the phenyl ring C11-C16 and the thiourea moiety is $70.3(1)^{\circ}$.

Experimental

N-Phenylthioureidoalkanephosphonate was prepared by condensation of the appropriate aldehyde, N-phenylthiourea and triphenyl phosphite (Kudzin \& Stec, 1978). The resulting compound was purified by crystallization from a chloroform/ethanol solvent system. The purity was checked by means of ${ }^{31} \mathrm{P}$ NMR, ${ }^{1} \mathrm{H}$ NMR and TLC analysis.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}$
$M_{r}=440.48$
Monoclinic, $P 2_{1} / n$
$a=10.061$ (1) \AA
$b=20.561$ (1) \AA
$c=11.375$ (1) \AA
$\beta=105.38$ (1) ${ }^{\circ}$
$V=2268.8$ (3) \AA^{3}
$Z=4$
$D_{x}=1.290 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.289 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in xylene,
\quad bromobenzene, heptane and
toluene
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=22.5-30.3^{\circ}$
$\mu=2.15 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Plate, colorless
$0.45 \times 0.40 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku AFC-5S diffractometer

 ω scansAbsorption correction: analytical (de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.405, T_{\text {max }}=0.671$
4505 measured reflections 4266 independent reflections 3042 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=72.6^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 24$
$l=-14 \rightarrow 13$
3 standard reflections every 150 reflections intensity decay: $<2 \%$

Figure 2
A view of the dimeric molecules [symmetry code: (i) $-x+2,-y+1,-z+1$] All H atoms, except H 1 and H 2 and their symmetry equivalents, have been omitted for clarity.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.141$
$S=0.92$
4266 reflections
291 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0998 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.43 \mathrm{e} \AA_{\circ}^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0159 (8)

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

S1-C1	$1.663(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.518(4)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.352(3)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.521(4)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.357(3)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.4696(15)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.425(3)$	$\mathrm{P} 1-\mathrm{O} 3$	$1.5656(17)$
N2-C2	$1.451(3)$	$\mathrm{P} 1-\mathrm{O} 2$	$1.5791(16)$
C2-C3	$1.540(3)$	$\mathrm{O} 3-\mathrm{C} 31$	$1.413(3)$
$\mathrm{C} 2-\mathrm{P} 1$	$1.803(2)$	$\mathrm{O} 2-\mathrm{C} 21$	$1.413(3)$
N1-C1-N2	$112.3(2)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$109.9(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$123.75(18)$	$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 2$	$113.7(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$123.90(17)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	$113.74(10)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11$	$126.1(2)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	$115.01(9)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$125.2(2)$	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$	$103.40(10)$
N2-C2-C3	$113.0(2)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 2$	$116.26(10)$
N2-C2-P1	$106.62(16)$	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{C} 2$	$105.32(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{P} 1$	$115.19(17)$	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{C} 2$	$101.53(10)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 5$	$110.9(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{1}{ }^{\mathrm{i}}$	$0.85(3)$	$2.16(3)$	$2.975(3)$	$162(3)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots 1^{\mathrm{i}}$	$0.78(3)$	$2.17(3)$	$2.932(3)$	$165(3)$

Symmetry code: (i) $2-x, 1-y, 1-z$.
All H atoms of methyl and phenyl groups were geometrically placed. All methyl-H atoms were constrained to their parent atoms as
a rigid body $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ and the $U_{\text {iso }}$ values were refined as equal to $1.5 U_{\text {eq }}$ of their C parent atoms. All phenyl-H atoms were constrained to their parent atoms as a rigid body ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and the $U_{\text {iso }}$ values were refined as equal to $1.2 U_{\text {eq }}$ of their parent C atoms. All other H atoms (H1, H2, H201 and H301) were located in a difference map and refined isotropically.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a); cell refinement: MSC/ AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989b); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995) and PLUTON92 (Spek, 1992); software used to prepare material for publication: PARST97 (Nardelli, 1996).

We thank Professor Dr Hab. M. Bukowska-Strzyżewska for helpful advice. Financial support from the University of Łódź (grant No. 505/667) is gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-83.

Bernstein, J., Davis, R. E., Shimoni, L., \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Cao, Y., Zhao, B., Zhang, Y.-Q. \& Zhang, D.-C. (1996). Acta Cryst. C52, 17721774.

Kafarski, P. \& Zoń, J. (2000). Aminophosphonic and Aminophosphinic Acids. Chemistry and Biological Activity, Vol. 2, edited by H. Hudson and V. Kukhar, 33-67. New York: Wiley and Sons Ltd.
Kudzin, Z. H. (1996). Badania w dziedzinie kwasów 1-aminoalkanofosfonowych, pp. 1-110. Łódź: WUŁ.
Kudzin, Z. H. \& Stec, W. J. (1978). Synthesis, pp. 469-472.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1989a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1989b). TEXSAN. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL9. University of Göttingen, Germany.
Spek, A. L. (1992). PLUTON92. University of Utrecht, The Netherlands.
Zhang, D.-C., Zhang, Y.-Q., Cao, Y. \& Zhao, B. (1996). Acta Cryst. C52, 17161718.

